
Tools and Techniques for Measuring and
Improving Grid Performance

Rupak Biswas
NASA Ames Research Center

Moffett Field, California, U.S.A.

rbiswas@nas.nasa, gov

Joint work with:
• M. Frumkin
• W. Smith
• R. Van der Wijngaart
• P. Wong

I APART-2001

Overview

• Motivation and Objectives

• NASA's Information Power Grid

• Grid Benchmarking

,_ Grid Performance Monitoring

. User-Level Grid Scheduling

. System-Level Scheduling

I APART-2001

Page1



Motivation and Objectives

• Large-scale science and engineering accomplished through

interaction of geographically-dispersed people, heterogeneous
computing resources, information systems, and instruments

• Overall goal is to facilitate the routine interactions of these

resources to reduce NASA mission-critical design cycle time

• Many facilities around the world are moving toward making
resources available on a "Grid" (grid computing)

• The Information Power Grid (IPG) is NASA's push for a persistent,
secure, and robust implementation of a Grid

t Investigate techniques and develop tools to measure and improve
performance of a broad class of applications when run on a Grid

APART-2001
3

i

Information Power Grid

_, Involves linking NASA's vast disperse resources to create an

intelligent, scalable, adaptive, and transparent computational,
communication, data analysis, and storage environment

human collaboration computing

instruments remote sensing

data exploration i storage

APART-2001

Page 2



APART-2001

,, Deficiencies of current Grid performance measurement technology
o Simulation tools idealized, unclear Grid model assumptions, static

(WARMstones, Bricks, MicroGrid)

o Superposition principle of probes may not hold

(Globus HBM, NWS, NetLogger)

,_ Existing techniques useful for

o Users debugging Grid application performance
o Developers of Grid and communication software

,_ But does not provide metric for comparing Grid performance on
actual distributed applications

• Goal:

o Determine Grid functionality and application performance objectively

o Use representative set of distributed applications

APART-2001

Page 3



Grid Benchmark Requirements

• Tests computational aspects of environment

• Is representative of scientific computing tasks

• Uses basic Grid services

_, Is not intrusive (no throughput stress testing)

_. Contains communicating processes

• Does significant communication

_, Is verifiable (deterministic, not interactively steered)

. Needs no initialization data files

. Is fair

[ APART-2001

NAS Grid Benchmarks (NGB)

Provide paper-and-pencil specifications of small set of complete but
representative distributed applications

• For convenience, also provide reference implementations
(Globus, Legion, Condor, Java, ksh)

• Focus on computational aspects of Grids

o Use mesh-based NAS Parallel Benchmarks (NPB) as building blocks
(well understood, calibrated, deterministic, portable, allow communication,

parallel, no input required but output of one can be input for another)

o MG (multigrid for Poisson eqn): post-processing (data smoother)

o FT (spectral method for Laplace eqn): visualization (spectral analysis)

o BT (ADI, block tridiagonal): 7
SP (ADI, scalar pentadiagonal): Scientific computations

LU (lower-upper sym Gauss-Seidel): ._ (flow solvers)

APART-2001 l J

Page 4



NGB Construction

• Construct synthetic Grid applications for scientific computing

• Data Flow Graph coupling NPB codes

• Provide wide range of problem sizes (classes): S, A, B, C ....

• Benchmarks non-converging, but numerically stable

Limit number of verification values

• Specify abstract services: authenticate, create task, communicate

,, Do not specify mapping, scheduling, fault tolerance, data security

• Report turnaround time and the resources used

APART-2001

Embarrassingly Distributed (ED) Helical Chain (HC)

APART-2001 J Cyclic process (restart)_ °

Page 5



NGB Data Flow Graphs (Class S)

Visualization Pipe (VP) Mixed Bag (MB)

Visualization cycle
I APART-2001

Unbalanced chain

Page 6



NGB Issues

• Are proposed Data Flow Graphs representative of scientific apps?

. What other classes of apps should be used?

• Is turnaround time the best measure?

• Do we need to consider a Grid currency (G$)?

• How to interpret the results?

o Primitive Grid services (functionality, consistency among runs)
o Reservation of resources (variation of single resource)

APART-2001

Grid Performance Monitoring

• IPG a large distributed set of resources, services, and applications

o Will be failures; needs to be monitored
o Must be managed

• Develop general framework for observation and control

o Observe and control variety of resources, services, and applications
o Scalable, secure, and compatible with emerging GGF standards
o Extensible to observe new events, perform new actions, and manage

• Deficiencies of existing monitors

o Cannot be embedded intools or apps (AIMS, Big Brother)
o Limited fault detection functionality (Globus HBM, NWS)

o System- or app-specific information, but not both (SNMP-based tools,
MPICH profiling)

o Lack of extensible data forwarding and gathering mechanisms (Netlogger)
o Incompatibility with IPG security and authentication requirements

J
APART-2001 ]

Page 7



CODE: Control and Observation of I_"='="

Distributed Environments

Adve_ise

o Directory Service contain info about Observers & Actors for Director

o Sensor Manager manages sensors, subscriptions, queries

o Actuator Manager handles requests for actions

o Expert System + User Rules instead of Management Logic in Director

APART-2001
15

CODE Implementation

• In C++ to be modular and extensible

• Uses pthreads

• Communicates using TCP, UDP, or SSL

OpenSSL for authentication and security

,, XML encoding of messages

• Data in Directory Service compatible with LDAP schemas

,, CLIPS expert system available as alternative in Director

• Initially targeting IRIX, Solaris, Linux

• Ported Director code to Java for GUI

APART-2001 ]

J
16

Page 8



Grid Management System Using CODE

Observe and control a Globus-based computational Grid like IPG

o Becomes difficult as Grids get larger

* Things to observe

o Globus Resource Allocation Manager (GRAM) reporter daemons

o Grid information Service (GIS) servers

o Log files
o Resource status and usage

_, Things to control

o Restarting GRAM daemons

o Restarting / configuring GIS servers

o Add / remove user mapping
o Send appropriate e-mail

. Provide a GUI

I APART-2001

Grid Control System Using CODE

[ APART-2001

Page 9



User-Level Grid Scheduling

• Grids have lots of different computers

,, Where should a user submit his application?
o Which machines can user access?

o Which machines have sufficient resources?

o How much do machines cost to use?

o When will the application finish?

o Time to pre-stage input files

o Time waiting in scheduler queue
Q Time to execute

o Time to post-stage output files

_, Currently ignore time to stage files

l APART-2001

Approach

,. Develop execution time prediction technique

o Instance-based learning using historical information

• Develop queue wait time prediction technique

o Simulate scheduling algorithms
o Use execution time predictions

• Add the two predicted times to obtain application turnaround time

• Select resources with minimum turnaround time

APART-2001

Page 10



Instance-Based Learning

• Aka: locally-weighted learning, memory-based learning, lazy
learning

• Maintain a database of experiences

o Each experience has set of input and output features

. Calculate an estimate for a query using relevant experiences

o Relevance measured with a distance function
o Calculation can be an average, distance weighted average, locally

weighted regression
o Use only nearest experiences (nearest neighbors) or all experiences

• Local learning: not one equation that fits all data points

• No learning phase as in neural networks

APART-2001 !

/;/"

I "1* Minkowski D(x,y)= _.x/-y:
.I

o Manhattan D(x,y)= E x/-y.f o Euclidean
.f

o Only works where features are linear

Heterogeneous Euclidean Overlap metric

o Handles features that are linear or nominal

I, if x: or y: is unknown,

d:(x,y)=Joverlap:(x,y _ if fis nominal,
_rn_diff/(x,y_ other_ ise

D(x,Y)=_/_df(x,Y) =

APART-2001

, . [O, ifx:=y:
overlap: (x, y) = _ .

[1, otherwise

maxf - min_._
]

Page 11



Feature Scaling

- Warp input space by scaling features in distance function

• Larger weight implies more relevant feature

d1= 4, d2=4 d]=4, d2= 8

APART-2001
23

Kernel Reg ression

• Estimate is distance weighted average of experiences

• Weighting also called kernel function

E_(q): ,
T K(z)(q,e))

e

• Want weight->C as d->O, and weight->O as d->_

,. Gaussian an example of kernel function: K(d)= e -_

,. Kernel width k to scale distances: _E(d)= e-(_)=

• Can also incorporate nearest neighbors

APART-2001
24

Page 12



• What configuration to use for prediction?
o Number of nearest neighbors

o Feature weights
o Kernel width

• Search techniques to find the best

o Genetic algorithms

o Simulated annealing
o Hill climbing

o Evaluate configuration using trace data

_, Currently, genetic algorithms show best performance

[ APART-2001
i

* Use IBL techniques on experience base of 2000 entries

Predict application runtime & compare against user estimate

,, Genetic algorithm search for configuration over a month's data from
steger

,. Evaluate using 6 months of data

,, Average error of prediction technique 4.6X less than user estimate

APART-2001

Page 13



Queue Wait Time Predictions

,_ Predict how long an application will wait in a scheduling queue
before starting execution

o Perform a scheduling simulation

o Simulate scheduling of all waiting and running applications
o Use execution time predictions in simulation
o Developed event-driven simulator
o implemented a NAS PBS simulator

_, Validated NAS PBS simulator

o For 6 months of data, 64% matched actual start times of ~20K jobs
o Some mismatches due to dedicated time and machine crashes

. No systematic analysis of prediction accuracy yet

I APART-2001 I J

User-Level Scheduling

•, Each user has their own grid scheduler

o No bottleneck or single point of failure

• Many potential goals for user-level schedulers

Minimize turnaround time of individual applications, parameter study, DAG
of applications

o Minimize cost

• Minimize turnaround time of individual applications

o User or scheduler identifies potential resources

o Cannot considerallgrid resourcesfor everyapplication
o Scheduler selects from potential set of resources using minimum predicted

turnaround time

o Scheduler sends application to selected resource

o Scheduler monitors application progress and periodically checks if | I

application should be moved to different resources ]1

APART-2001 _ J 28I
I

Page 14



Implementation at NAS

• Predict for three SGI Origins from NAS workstations

., Command line programs for predictions of execution times, start
times, and completion times when given PBS script or PBS job ID

. Command line program to suggest which Origin to use

• Experience base for each Origin

Use NAS Parallel Benchmarks to compute scaling factors between
machines

._ Predict for machine using it's experience base, or a scaled
prediction from other experience bases, depending on confidence

• Cache execution predictions to improve response time

APART-2001

Execution Prediction Implementation

• Predict for Steger, Hopper, and Lomax from any machine in cluster

• Separate experience base for each machine

J Use NPBs to compute scaling factors between machines

• Cache execution predictions to improve response time

APART-2001

Page15




